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Antennas with identical patterns differ to the extent in which they n.odify
an incident wave, i.e., in the amount they scatter. An antenna is completely
described by an (infinite dimensional) scattering matrix. The concept of a
minimum ecattering antenna introduced by Dicke is generalizec to include antennas
with a finite number of accessible waveguide ports and with non-reciprocal com-

penents.

A canoniral minimum scettering antenna is defined as ont which becomes
*invisible* when the acceasible waveguide terminals arc vpen circuited. Such
an antenna is shown to be unique once the independent radiation patterns have been
specified. Neither an impedance nor #n zdmittarnce marrix for such an antenna

exists.

The physical significance of the :.aizimum sccttaring antenna concept is
examined from several points of view. Appronrinte geacralizations of Dicke's
results are derived for muitiport erd no~-zrecip-oca. antennas. The "scattered
power", is introduced as a convenient messure of scuttering. It is demonstrated,
for a large class of antennas, tha* the scaltesed power is quite generally greater
than the absorbed power, equality being attained for minimum scattering antennas
’ cf this class. This result further justifies the minimum-scat.ering terminology.

! Arrays of canonical antennss are discussed briefly.
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MINIMUM-SCATTERING ANTENNAS

I. Introduction
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The electromagnetic properties of an antenna are only partially described by
its patterns; antennas with identical patterns differ to the extent in which they meodify
an incident wave, i.e., in the amount they scatter. The concept of a minimum-
scattering antenna was first introduced by Dickel. The approach taken in this paper
is mathematically much simpler and more general in two respects: It includes
antennas with any number of ports and antennas with non-reciprocal components.

The scattering network description of an antenna is introduced in Section II,
and a canonical minimum-scattering antenna is defined as one which becomes
"invisible" when the accessible waveguide terminals are open circuited. Such an
antenna is shown to be unique once the independent radiation patterns have been
specified, and that neither an impedance nor admittance matrix for such an antenna
exists. The canonical antenna is generalized by cascading it with a "transparent”
ZN=port; the result is termed a minimume-scattering antenna.

The physical significance of the minimume-scattering antenna concept is
examined from several points of view in Section IIl. Appropriate generalizations
of Dicke's results are derived for multiport and non-reciprocal antennas. The
" scattered power", is introduced as a convenient measure of scattering. It is
demonstrated, for a large class of antennas, that the scattered power is éenermy
greater than the absorbed power, equality being attained for minimume-scattering
antennas of this class. This result further justifies the minimume-scattering
terminology. Arrays of canonical antennas are discussed Brieﬂy.

II. Canonical Minimum-Scatte rix}LAntennu.

The netiwork description of a general antenna is indicated schematically in
Fig. 1. The ports at the left, representing the local, accessible waveguide terminals
of the antenna, are numbered from { to N; the ports on the right, N+{,..., represent-
ing the electromagnetic fields on a distant sphere enclosing the antenn2, are infinite
in number. A:¢ the N accessible ports normalized, rms=-voltage, incident and re-
ﬂected.wavé phiasors are defined and collected as elements of the colurnn matrices

» respectively, in the conventional mannerl' 2. On a distant sphere the

2g20d 2,
electromagnetic field can be represented as a superposition of a complete, denumer-
ably infinite set of real, orthogonal modes. The modes occur in pairs as incoming

and outgoing spherical waves (identified with incident and reflected waves of uniform

waveguide terminology). The corresponding modal coefficients, which completely
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Fig. 1 - A General Antenna
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Fig. Z - Transparent ZN-port in series with a canonical minimum-
scattering antenna.
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specify the field, are ordered in an arbitrary rnanner to form the (infinite dimensional) -~

column matricesi 36 and Bp . and normalized®* so that :'B Ep and E+ﬂ Eﬂ are the

incident and reflected powers, respectively.

In the absence of any antenna

= . 1
L (1)
The general (linear) antenna can now be characterized in a scattering formalism
]
!
b, Sea | Snp N 2a
v =|enma] =lecaa- -:--,-----) e-e= ] = Sa . (2)
L sa 1 pp %

A lossless antenna conserves power, £+3 = _b+l> » and consequently, the scattering

matrix S is unitary,

sts=1. (3)

As the first step towards an idcal antenna, one demands circuitry such that each
accessible port be reflectionless and decoupled from any of the other accessible ports,
i. €.,

SM= 0 . (‘)

It follows that the ith column of Spc corresponds to the radiation pattern of the antenna
when excited at the ith port alone. Condition (4) will hereafter be assumed.

For an evaluation of the (unnecessary) disturbance or scattering of incident
fields by an antenna the obvious standard is provided by the absence of any antenna,
i.e., free space. In the »bsence of any antenna the input scattering amplitudes,

{ through N, are meaningless, and corresgonding entries in the scattering meatrix

ere therefore omittad. The remainder of the scattering matrix of free space is

Sg= |-=--v--- (s)
oo
where in virtue of (1) X” is an infinite dimensionsl unit matrix.
A cancanical minimum-scattering antenna baving specified radiation patterns
Sp‘ could, therefore, tentatively be defined as a lossless device approaching (1)
as closely as possible, suitable adjustments at the accessihle ports of the antenna

* Note : 3‘ denotes the conjugate of the transpoee of & .




-4

being permitted. The sense in which (1) is to be approached need not be discussed

at this point, since,for any given Spa consistent with (3), there exists a unique loss-
less antenna which on open circuit at ports | through N scatters exactly as required.
The last statement will now be proved, «nd the scattering matrix of the canonical

antenna found.

On open circuit at ports { through N

- -0 (6)

Employing (2) to eliminate a_ and b, in favor of ag and _bp

bp = (Spg Sap * Spp! 25 (7)

The scaitering relation (7) coincides with the standard, free space (!) and (5), only if

b Sap * Spp = Ipp - ®)

which may be solved for S”- Conservation of energy then fixes S uniquely, since
(3) is satisfied only if

- ot
S'a SM . (9)

It has therefore been demmonstrated that the scattering matrix of the canonical
minimum- scettering antenna with radiation patterns SPG is

'
' +
0 : Spc
S & leccacnca brmccnaw smcescocas . (10)
c |
\ Spa : s - Spa S&

Such an antenna is reciprocal when

T

+
pa =S

s fa (11)

i.e., S’. is purely real .

Certain purely formal properties of Sc are pointed out next, a full discussion
of its phyeical significance being reserved until Section IIl.

The eigenvalues of Sc are defined by




;
|

(Sc- d'nI) En =0, (12)

where L is the eigenvector corresponding to the eigenvalue T Since Sc is unitary,
its eigenvalues lie on the unit circle, Ifnl = 1. Since Sc is Hermitean,its eigen-

values are real. Consequently

o =+1, n=l,2,3,.... (13)
n -

The multiplicity of the eigenvalue -1 can be shown to be precisely N. For ex-

panding (12) with v .c -1, one obtains with some manipulation

' - s (14a)

sp: <np - " 2na’
SpaSpa’  %np = np . (14b)

is in the N-dimensional sub-space spanned by

Equation (14b) implies that *.8
with each 3-np° There are

the N columns of spn while (14a) associates a unique 5.a
therefore exactly N linearly independent eigenvectors of Sc with eigenvalues -1.

An incidental result which follows directly from (13) is that neither an impedance
nor an admittance matrix corresponding to Sc exists.

Consider the effect of inscrting a lossless, trmparent3 ZN-port,

A \ Yo
(15)

in series with a canonical antenna Sc, as illustrated in Fig. 2. The resultant

antenna has the scattering matrix

o 1+ S s
§ = [ ..... ---4'.---1".‘-3‘1 ..... -\. (16)

Antcnnas characterized by scattering matrices of the form (16) will be termed simply
minimuwne.scattering antennas. This terminology is justified by the fact that such an
ar.tenna is rendeved invisible by a particular lossless termination of the accessible
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waveguide ports. Further, when reflectionless loads (receivers) are attached at

A A
ports | through N, Sc and Sc scatter identically (Sﬁﬂ = Sﬁﬂ)' In the special case

_ ot
Say = Sva (17)

A
SC is also a canonical minimurmn-scattering antenna.

1I1I. Characteristics of Minimnm—ScatteririAntennas

The scattering matrix of a canonical minimumescattering antenna having N
specified (orthogonal) radiation patterns was constructed in the preceding section.
The construction was found to be unique. In this section the physical significance of

this construct is examined from several points of view.
When an electromagnetic wave a

0

L]

(18)

is incident on an antenna S, waves P-c = Sqﬂ .ﬁp are excited in the N waveguide ports
of the antenna and waves -t-,ﬂ = Sﬂp -Eﬁ are reflected into the surrounding space. The
scattered fical\'l‘_f'p due to an antenna is the difference in the external fields when an

antenna is present as compared to the situation when no antenna is present. Formally,

L=y - (190

or in the special case of a matched antenna, a, = 0,
= -1 o 19b
Lp= (Sps - Tpp) 2 (19%)

As a definite measure of these scattered {ields one may introduce the concept of
scattered power

Ak :

Pst ip . (20)

For a canonical minimum-scattering antenna (10} with matched receivers, one

verifies
"
[

ps.‘(sw-w{:pl =P, (21)
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where F‘A = lbal 2 is the absorbed power. Morcover, the pattern of this scattered
radiation is a linear combination of the orthogonal patterns in which the antenna
normally radiates, -§-£3 = - 5043 Bo. « These results carry over to minimume-scattering

antennas in general.

The physical mechanism through which an antenna absorbs power from an
incident wave is destructive interference, i.e., the antenna scatters so as to cancel

some of the incident fields. It may be conjectured, therefore, that, quite generally,

Ps > PA . (22)
This is the casec for all antennas with
= |t
lsupﬁp I Ispu_a_ﬁl (23)

as demonstrated in the Appendix. Equation (23) holds for all real excitations of
arbitrary reciprocal antennas or arbitrary-excitation of reciprocal antennas with
real patterns*. For minimum-scattering antennas equality is achieved in eq :ation (22).

When the canonical minimum-scattering antenna is reciprocal, Sc is pure
real,(11), and several significant new features appear. The first has to do with the
symmetry of the antenna patterns. Given an incident plane wave, the function re-
presenting a second wave incident from the opposite direction is the complex conjugate
of the first. Since the spherical mode functions are real, the modal coefficients
representing the second wave 3gp are the complex conjugates of the coefficients re-
presenting the first LTYU ice.,

3‘-{32 = _a_ﬁl . . (24)
The power absorbed in the two cases are equal

by 1% = 15ap 25, 1€ = ISap 2, 122 | pgpl® « | (25)

- It follows that the power radiation patterns of such an antenna are symmetrical with

respect to the origin. An elementary dipole illustrates these features.

Consider the possibility that the scattering matrix of' an antenna varies with
frequency in such: & manner as to retain the form of Sc = Sc + From the general

*c.f. equation (25).
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4 .
theorem relating the frequency variation of a lossless reciprocal junction to the

average energy stored in the junction W

a+.s* dsc
2 V2% To

for arbitrary a, it follows that W = 0, and hence that

(Y

> W (26)

dS
c

F =0. (27)

Finally a brief remark may be entered regarding arrays of canonical minimum-
scattering antennas. Assume the elements to be so spaced that the sphores
circumscribed about each element do not overlap. Each element, on open circuit,
produces no disturbance in any incident field, and therefore the array as a whole is
invisible. Nevertheless, the array is not necessarily a canonical minimum-scatter-
ing antenna, since the orthogonality relations (3) are not necessarily satisfiea
Prescribed feed networks may to some degree of approximation assure this
orthogonality. The properties of an array of such antennas are peculiarly susceptible
to exact computution:

a) The fields radiated by a given element (with all others open circuited) are
rigorously the same as those which would be radiated by the element isolated and

b) The open circuit voltage computed from this field at each one of the other

elements is rigorously that which would be computed for an isolated antenna.

In conclusion, the analysis of minimum-ecattering antennas has been greatly

simplified and the range of this concept considerably extended beyond results pre-
viously published.
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Appendix: A Relation Between PA and PS.
Let
o ] by
2= -
a b
—ﬂJ L

and define the scattered power, PS' and the absorbed power, PA,

- 2z - 2
ps'lka'_a_ﬁl 'pA_'_bnl .

For a lossless antenna conservation of energy requires

agl% = 1512 +1pg1°.
Hence,
Pg= | by 1%+ 1agl% - 2Re (afy bg)
_ PA+Z[|_§p|2-Re($ 1’&’] .
Thus Pg > P, if and only if

4 2
R b,) <1b .
e (ag p) < | pl
Clearly it is sufficient to show that

+ 2
l(g‘, _bp)l < |5¢I .

Consider the deteriie t of the Gram5 matrix formed from :ﬂ . b

L7
columns of S_ , 1.el,
fa ‘
- + T
det -‘-;143 .;Eﬂ fﬁsbc
+ + +
5 2 2 2y % pa | 20
+ +
| S 2 >pa 28 %ga’pa |

’ and the N
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From the lossless constraint

+ +
_ - S ,
Sgalg = 0=5g Spq
and
+ i}
St Sga ™ Iy

Hence the above determinantal inequality leads to

2,

+ &< 2 . 2 gt

If now, equation (23),

_ +
lsap.ipl = l Spu Ep! ’

is satisfied,
{4

f
| @ vl ® < Igl? (l ag 12+ 1 5, 1%,
or, in view of cou:«rvation of energy,
(ah g0 < ibgl -

Thus (23" is a suificient condition for the validity of Pg > P, for arbitrary ag:




ok At e

[ QPRI

1.

5.

i Sioc ]

SV ST vy I ARFX TNV

-11-
References

C.G. Montgomery, R.H. Dicke, and E. M. Purcell, "Principlcs of Microwave
Circuits, " Radiation Laboratory Series Vol. 8, McGraw-Hill Book Co., Inc.,
1948, pp. 317-333.

N. Marcuvitz, " Waveguide Handbook, " Radiation Laboratory Series Vol. 10,
McGraw-Hill Book Co., Inc., 1951, Section 2.8.

W.K. Kahn, "Scattering Equivalent Circuits for Common Symmetrical Junctions, '
I.R.E. Transactions on Circuit Theory, Vol. CT-3, No. 2, June 1956, pp. 121-
127,

Ibid. 1)p- 154.

F.R. Gantmacher, "The Theory of Matrices, " Chelsea Publishing Company,
New York, 1959, Vol. II, p. 251.

b L S e

PO L Yo

O tigre. .~



